skip to main content


Search for: All records

Creators/Authors contains: "Shah, Smit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ti3C2Txbelongs to the family of MXenes, 2D materials with an attractive combination of functional properties suitable for applications such as batteries, supercapacitors, and strain sensors. However, the fabrication of devices and functional coatings based on Ti3C2Txremains challenging as they are prone to chemical degradation by their oxidation to TiO2. In this paper, we examine the oxidation of Ti3C2Txin air, liquid, and solid media via conductivity measurements to assess the shelf life of Ti3C2TxMXenes. The oxidation of Ti3C2Txwas observed in all the media used in this study, but it is fastest in liquid media and slowest in solid media (including polymer matrices). We also show that the conventional indicators of MXene oxidation, such as changes in color and colloidal stability, are not always reliable. Finally, we demonstrate the acceleration of oxidation under exposure to UV light.

     
    more » « less
  2. Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non‐oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various “graphene” products, as well as metrics that determine the potential for industrial scale‐up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large‐scale production.

     
    more » « less
  3. Abstract

    The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation.

     
    more » « less